Skip to content

Long Context, Less Focus: A Scaling Gap in LLMs Revealed through Privacy and Personalization

License

Notifications You must be signed in to change notification settings

SafeRL-Lab/PAPerBench

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 

Repository files navigation

Long Context, Less Focus: A Scaling Gap in LLMs Revealed through Privacy and Personalization

Download dataset from the link: Dataset

Create an environment (requires Conda installation):

Use the following command to create a new Conda environment named robustgymnasium with Python 3.10:

conda create -n paperbench  python=3.10

Activate the newly created environment:

conda activate paperbench

Install dependency packages:

pip install -r requirements.txt

Run VLLM server

export CUDA_VISIBLE_DEVICES=4,5,6,7   
python -m vllm.entrypoints.openai.api_server \
  --model meta-llama/Llama-4-Scout-17B-16E-Instruct \
  --host 0.0.0.0 \
  --port 8002 \
  --tensor-parallel-size 4 \
  --max-model-len 328816 \
  --dtype auto \
  --gpu-memory-utilization 0.90 \
  --trust-remote-code

For personalization evaluation

bash paperbench/personalization/eva_personalization.sh

For privacy evaluation

bash paperbench/privacy/eva_privacy.sh

Citation

If you use PAPerBench in your research, please cite:

@article{gu2026long,
  title={Long Context, Less Focus: A Scaling Gap in LLMs Revealed through Privacy and Personalization},
  author={Gu, Shangding},
  journal={arXiv preprint arXiv:2602.15028},
  year={2026}
}

About

Long Context, Less Focus: A Scaling Gap in LLMs Revealed through Privacy and Personalization

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published